

Evolution of Infrastructure in Korea - High Voltage Engineering Technology -2023.08.28 Ja-Yoon KOO Emeritus Professor, Hanyang University

Korea is a latecomer to the global movement to electrify industrial activities.

Its businesses & universities have long been followers rather than leaders.

Given this history

The resulting shortage of leading-edge knowledge and experience among the related institutions

Preparing a memorial lecture on the subject has proven to be difficult.

Short-Bio of Prof. Emeritus J.Y. KOO

Activities in Korean Society

- 1988.03 2016.02: Professor at Hanyang University (Prof. Emeritus)
- 2014.09 2018.02: Outside Board member of KEPCO
- 2013.02 2017.01: Chairman of Korean National Committee of CIGRE
- 2012.01 2012.12: President of Korean Institute of Electrical Engineers
- 2010.06 2013.06: Chairman of KOREC (Korean Electricity Regulatory Commission)

International Contributions

- ELECTRA Editor (since October 2022)
- Chair of ISTC of 2019 Jicable (International Conference on Insulated Power Cable)
- CMD 2014 Chairman (International Conference on Condition Monitoring and Diagnosis)
- ISH 2013 Chairman (International Symposium on High Voltage Engineering)

Activities within CIGRE

- Awardee of 2021 CIGRE Honorary Member (2021 August)
- 2020.08 Present: CIGRE Technical Committee Elected Member
- 2004.08 Present: CIGRE Administrative Council Member
- 2014.08 2006.07: CIGRE Steering Committee Elected Member
- 2004.08 CIGRE Distinguished Member Award
- 2004.08 2006.07: CIGRE Technical Committee Elected Member
- 2004.08 2006.07: AORC-CIGRE Chairman
- 2000.08 2008.07: Regular Member of SC-D1
- 1988.08 2000.07: Regular Member of SC-21
- 1986.08 ~ 1988.07: Observer Member of SC-21 & SC-15

CONTENTS

KEPCO Power Testing Center - KEPCO Research Institute -

1. HVAC test facilities

Part 1

- AC Overhead Line test
- AC Underground cable test
- 2. HVDC Test facilities
 - DC Overhead Line test
 - DC Underground Cable Test
- 3. Concluding Remarks : Future major activities

Part 2 High Power Testing Laboratory - Korea Electrotechnology Research Institute -

- 1. 8000 MVA-Class High Power Test
- 2. Concluding Remarks: The Present & Vision in Future

4/61

Part 3 Conclusion - Future vision HV & HP Technology in Korea -

Part 1 KEPCO Research Institute (KEPRI)

- KEPCO Power Testing Center at Gochang -

Why Large-scale Transmission in Korea?

Evolution of annually consumed electricity in Korea 91.3

☑ High voltage and Large current technology are required to cope with the rapid expansion of the Korean energy market. → 765kV T/L

Purpose of Gochang Testing Center

- ☑ To verify the specification and standards related to the power apparatus operating at 765kV transmission line
- ☑ To resolve local complaint caused by the transmission line in HVAC & HVDC

Part 1.1

HVAC Test Facilities

AC Overhead Line Test

Test Line & Facilities for 765kV Overhead T/L

- 765kV Vertical Double Circuit Test (August,1993)
- Large Current Test using AC 6,500A Generator (July,2002)

Main Concerns

- ☑ Localization and commercialization of power equipment
- Long-term aging test for Transmission insulator under the cooperation with EPRI, ESKOM
- ☑ Live line maintenance technology
- Assessment on the electrical safety and environmental effects under 765kV Transmission Line

Investigation: Audible Corona Noise

6-Cardinal Bundle conductor at live line (16 months)

- L50 AN(audible noise) test at 15m from the outermost phase of 6-Cardinal Bundle conductor:
 48.8 dB(A) in Rainy day / 42.1 dB(A) in Fair weather.
 - The measured AN(L50) on the foul weather is very close to the one calculated using EPRI tool.
 - Our design satisfies the Korean criteria (50 dB(A)) at specified distance.
 - In Foul weather, it would be better to reduce appropriately transmission voltage respecting required admissible AN level.

Investigation: Radio Interferences & Electric field

Long term test at Live line (16 months)

- RI(L50) measured in foul weather: 45.7 dB(μV/m)
 1.3 dB(μV /m) lower than Korean requirement
- Electric Field at 28m under the live line:
 - International specification: 5kV/m.
 - Our measurement: 3.5kV/m

The results (AN, RI, Electric field) show suitability

6-Cardinal Bundle Conductor for 765kV Double Circuit T/L

Remark: Safety for Workers

To secure work safety for live line workers

☑ Investigation on the Flashover path

- ☑ Necessary tools by our design for double circuit line
 - ✦ Applicable also to single circuit live line

Novel Conductor & Sensor Development

- ☑ Investigation on the effect of large current and tensile characteristics
 - Novel conductor is chosen to avoid new T/L construction
- Development of sensor for FDLR (Forecasted Dynamic Line-Rating)
 Commercial service in 2024

765kV Double Circuit T/L using 6-Cardinal Bundle conductor
Transmission capacity up to 12GW

World's First commercial service in 2003

Our design, today

Recognized as an **excellent choice** for other utilities facing:

 $\mathbf{\Sigma}$ The challenges caused by long - standing social grievances

☑ Limited ROW available for new transmission lines

AC Underground & Submarine Cable Test

Overview of Test Laboratory (June 2010)

- └ Control Room (L×W×H=72m×10m×14m)
- \square HV Test hall (L×W×H=86m×35m×25m)
- ☑ Outdoor Test Yard (5 test tunnels : length 310m)

Main Facilities

[Overview of Test Hall]

[Test hall]

[Shield room]

[Test tunnel]

[Control room] 19/61

Core Testing Equipment

700kV 14A Generator (Resonance type)

700kV 6A Generator (Resonance type)

800kV 10A Generator (Winding type)

4MV Impulse Generator 6kA AC current source

Shield Room <1pC

Related Specification

Equipment	EA	Specification
HVDC Voltage generator (resonance type)	2	700kV, 14A 700kV, 6A
HVDC Voltage generator (winding type)	1	800kV, 10A
Impulse generator	1	4MV
AC current source	5	6kA
Wall Bushing	4	LI 800kVp
Water Termination System	1	600kV
DAS & Morning System	1	-
Faraday(shield) Room	1	Background noise ≤ 1pC

Remark: AC 400kV Submarine cable system

Pre-qualification test (CIGRE TB 490 /18 months)

☑ AC 400kV XLPE 1C x 2,500m² cable 110m, Transition Joint (TJ), Repair Joint (RJ), Factory Joint (FJ), EBG, EBA

Successfully completed and Certified by KEMA (August 2022)

Part 1.2

HVDC Test Facilities

DC Overhead Line Test

HVDC Overhead Transmission line in Korea

East-West Power Grid Project (8GW)

☑ To transport electricity generated at Shinhanul NP from the east coast area to the metropolitan area through a new overhead transmission line by 2025

2 HVDC ±500kV Bi-pole , T/L 230km, Metallic return (Tower 440)

± 500kV HVDC Full Scale Test Line

Purpose

- ☑ To determine HVDC insulation coordination relevant to actual tower configuration
- ☑ To analyze the environmental effect of Double Bi-pole T/L prior to commercialization
- ☑ To develop relevant accessories and maintenance technologies

Main concerns

HVDC Towers (2 Tower types)

To investigate Electromagnetic field intensity & Corona noise
 Domestic electrical environment requirements are verified

☑ To evaluate the performance and reliability for both Glass and RTV Silicon coating insulators to replace porcelain insulators

DC Underground Cable Test

HVDC Cable Projects in Korea

1 ±180kV HVDC Jeju-Haenam (since 1998) MI cable, 150MW x 2pole, 101km

2 ±250kV HVDC Jeju-Jindo (since 2013) MI cable, 200MW x 2pole, 113km

3 ±150kV HVDC Jeju-Wando (2023 ~) XLPE cable, 100MW x2pole, 89km

4 ±500kV Bukdanjin-Godeok HVDC (#1, 2020 ~) MI PPLP cable, 1.5GW x 1pole, 34.2km

5 ±500kV Bukdanjin-Godeok HVDC (#2, 2023~) MI PPLP cable, 1.5GW x 1pole, 34.2km

±500kV HVDC (to be completed: 2026)
 XLPE cable + Overhead transmission
 2GW x 4pole, 230km from the East Coast

HVDC Cable Test Laboratory (2021 October)

Overview

- Main control room, 2 Local control room
- ☑ HV Test hall (3 test sections, test tunnel, ducts) / 80m×50m×38m
- ☑ Outdoor tensile bending test yard (length 45m)

Core equipment for testing HVDC cable

±1800kV DC Generator

±1400kV DC Generator

±600kV DC Generator

4MV Impulse generator

Local control room

6kA AC current source

Related specification

Equipment	EA	Specification
HVDC Voltage generator	3	±1,800kV 10mA ±1,400kV 20mA ±600kV, 50mA
Impulse generator	1	4MV 600kJ
DC current source	1	5kA 6V
AC current source	2	6kA 20V
Shielding curtain	1	-
Tensile bending test equipment	1	100ton
DAS	1	-

Additional facility: DC Current source

- ☑ Direct application of DC current instead of induction current
- ☑ Possible to ensure the required reliable performance during test

Application for Type & PQ Test

HVDC Submarine cable (CIGRE TB 496)

☑ Conventional method

- Induction current is used for load current in HVDC cable Type and PQ test
- Temperature control of the cable conductor is difficult due to the induction of the armor layer. Therefore, the armor layer must be removed.

☑ KEPRI's method

- **Direct current application** to cable conductor **using DC current source**.
- → Easy control of conductor temperature without removing armor layer.
- → Possible to put the complete submarine cable with armor into test.

Additional facility: Shielding Curtain

Easily separate test hall into three parts Possible to run two tests at the same time

Additional facility: Tensile Bending equipment

☑ Weights of **up to 100 tons** using three types of wheels

Achievement: Real-time PD Diagnosis system

■ Mi-PPLP HVDC Land Cable (±500kV DC)

World's First commercial application Land HVDC Cable installation (Duct & Tunnel)

Achievement: Real Time Fault Location System

Application to HVDC Submarine & Land Cable in Korea

2 Independent & Complementary functions

- ➤ Trigger monitoring: Abnormal signals from the weak spots → When they are above the trigger level, corresponding to fault current, sensors installed at both end of cable detect them..
- Real Time monitoring: DC load current & Fault current are detected by the sensors simultaneously
 Fault location is recognized when these signals are above the trigger level respectively

Commercial service at 3 long distance HVDC Line

±180kV HVDC submarine cable, October 2017

- ±500kV HVDC land cable , March 2020
- > ±250kV HVDC submarine cable, 2023

No faults till now

[Real Time Fault Location System S/W]

[Application of Real Time Fault Location] 38/61

Accredited Laboratory for Cable Testing

No. 105 (1/9)

CERTIFICATE OF ACCREDITATION

Name of Laboratory : KEPCO Research Institute

Representative : Kim, Ssang-Su

Address of Headquarters : 167, Samsung-Dong, Gangnam-Gu, Seoul, Korea

Address of Laboratory : 105, Moonji-Ro, Yusong-Gu, Daejeon, Korea

Duration : April. 4 , 2009 ~ April, 3, 2013

Scope of Accreditation (Scope of Accreditation is described in the accompanying Annex)

This testing laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025 : 2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated 8 January 2009).

March 2, 2011

Hup. Kyons

Administrator, Korea Laboratory Accreditation Scheme(KOLAS) Korea Laboratory Accreditation Scheme

KOLAS 공인시험기관 인정서

한국전력공사 전력연구원(시험)

인 정 번 호: KT105

법 인 등 록 번 호: 114671-0001456 (또는 고유번호)

사 업 장 소 재 지 : (소재지)대전광역시 유성구 문지로 105 한국전력공사 전력연구원 (소재지-1)강원도 춘신시 남산면 해오름길 140 (소재지-2)건라북도 고창군 상하면 명사십리 50 최 초 인 정 일 자 : 2000년 04월 04일

인정유효기간: 2021년 12월 09일 ~ 2025년 12월 08일

인정분야 및 범위: 별첨

발 행 일: 2021년 12월 09일

상기 기관을 국가표준기본법 제23조, 적합성평가 관리 등에 관한 법률 제8조 및 KS Q ISO/IEC 17025:2017에 의거하여 KOLAS 공인시험기관으로 인정합니다. 또한 ISO-ILAC-IAF 공동성영에 언급된 바와 같이 인정된 분야 및 범위에 대한 기술적 능력과 시험기관의 품질경영 시스템이 적결함을 인정합니다.

한국인정기구(KOLAS)는 국제시험기관인정협력체(ILAC)의 상호인정협정(MRA) 서명기구입니다.

Standards & Accredited Tests by KEPRI

Standards	Subject	Accredited Tests
IEC 60230	Impulse Tests on Cables and their Accessories	Switching/Lighting Impulse
IEC 60885-3	Electrical Test Methods for Electric Cables	Partial Discharge measurement under AC
IEC 60840	Power cables with extruded insulation and their accessories for rated voltages above 30 kV (Um = 36 kV) up to 150 kV (Um = 170 kV) –Test methods and requirements	HVAC Cable Type & PQ Test
IEC 62067	Power cables with extruded insulation and their accessories for rated voltages above 150kV (Um = 170 kV) up to 550 kV (Um = 550 kV) –Test methods and requirements	HVAC Cable Type & PQ Test
CIGRE TB 852 (TB 496)	Recommendations for Testing DC Extruded Cable Systems for Power Transmission at a Rated Voltage up to 800kV	HVDC Cable testing

Remark: Support for domestic manufactures

HVDC XLPE Land cables

- ☑ ±500kV HVDC LCC XLPE Land Cable
- ☑ ±525kV HVDC VSC XLPE Land Cable
- ☑ ±320kV HVDC VSC XLPE Land Cable

±500kV LCC

±525kV VSC

±320kV VSC

Part 1.3

Concluding Remarks

Envisaged activities for HVDC cable system

Standardization of Space Charge Measurement

- ☑ Space charge accumulation in the insulation of XLPE HVDC cables
 - Shorten equipment lifespans or cause breakdown
 - Space charge measurement system & Certification test techniques will be standardized for commercial services.

Real Time Fault location detecting system

✓ Upgraded system will be integrated to HVDC line
 (Overhead + XLPE cable/ 230km) → This will transport
 8GW from the Ester coast to Metropolitan area in 2026.

Part 2

Korea Electrotechnology Research Institute (KERI) at Changwon

About KERI

Founded in 1976

Non-profit independent organization

- ☑ To promote domestic electrical engineering
- ☑ To serve international testing and certification

10th STL member (since 2011) Short-circuit Testing Liaison (STL)

1st and 2nd research building construction

HP & HV testing facilities and started testing & certification service

First- upgrade of HP & HV testing facilities

The second-upgrade of HP & HV testing facilities

Part 2.1 8000 MVA-Class High Power Laboratory

47/61

Construction of HPL (4000 MVA/ 1982~2005)

<Initial Facility>

4000 MVA-class HPL (1982)

- Short-circuit generator & Short-circuit transformer
 - → Single-phase synthetic testing facility and others
- < Improvement >

3-Phase Synthetic testing facility

- ☑ New construction (1992)
- Upgrade testing voltage and power capacity (2005)

< Enhanced Capability >

Short-circuit breaking Test

- ☑ Three-phase circuit breaker (170 kV, 50 kA) (1993)
- Gas-insulated high-voltage half-pole circuit breaker (800kV, 50kA) (1998)
- Gas-insulated high-voltage **full-pole** circuit breaker (800kV, 50kA) (2005)

Expansion of HPL (8000MVA/ 2011~2016)

To meet the domestic growing demand of short-circuit testing
 Short circuit generators are constructed (4000 MVA & 150 M USD)
 8000 MVA are available to test breaker (800kV, 80kA) (since 2016)

Schematic of HPL (8000MVA)

49/61

Overview of Test Facilities

Components of Short-circuit generator (SCG)

2000 MVA(G2 & G3), 2 Units

Back-up Breaker for SCG

Driving motor system (V.V.V.F)

Excitation system

Testing Transformers (TR)

Short Circuit Current

Short-Circuit Transformers

Primary voltage : 18 kV Secondary voltage : 24 ~ 96 kV

Primary voltage : 15 / 18 kV Secondary voltage : 4 ~ 48 kV

Short time & Peak Current

LVHC Transformers

Primary voltage : 18 kV Secondary voltage : 500 V ~ 1 000 V

Synthetic Test: Breaking & Making test for CB

Operating system for High Power Test

Electrical Control & Monitoring System (ECMS)

- ☑ Short-circuit generators
- Testing circuits $\mathbf{\nabla}$
- \square Test bay

Data Acquisition System (DAS)

Signal transmission through optical fibers ☑ High sampling rate for TRV

☑ 128 Ch. of CCTV system & High Speed Cameras

Control Rooms & Test bays

I 3 Control Rooms

I 8 Test Bays

- ☑ 2 Test Bays for HV & UHV
- ☑ 6 Test Bays for MV
- ☑ Reinforced Concrete

I 9 Assembly Halls

Part 2.2

Concluding Remarks

Key roles: Testing & Certification

Independent third party

- $\mathbf{\boxtimes}$ Testing services in compliance with ISO/IEC 17025.
- High-quality, reliable, and impartial testing services.
- Accredited institute by ACCREDIA, KOLAS
- STL type test certificates in compliance with recognized international standards and STL guides

- ☑ Upgrade of relevant testing facilities for High Voltage and High-power equipment
- ☑ International collaboration among testing organizations through global forums : Task force, technical committee, management committee, and working group

Core activities in the Future

I Future projects

- ☑ HVDC cables testing
- Secondary energy-storage technologies: Redox flow batteries (RFB)
- Leading-edge testing services beyond high-power and highvoltage equipment.

- VISION in Korea -HV & HP Technology

Vision of H.V. Engineering in Korea

A leading partner enabling to conduct relevant tests and investigations on the futuristic apparatus to be operated in distribution and transmission grid.

A provider enabling to propose any cutting-edge design for UHV apparatus to be operated in the future AC and DC grid by reinforcing test infrastructure.

A promising contributor to the global carbon neutrality goal by providing novel technology employable to the renewable energy engineering. Thank You for Your time

koojyhy@gmail.com