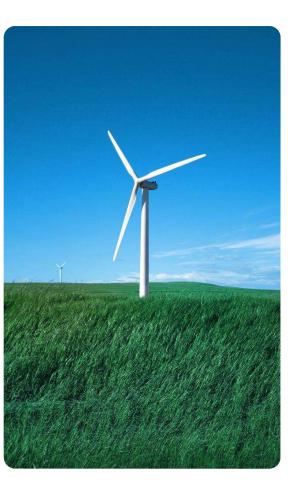


Why high voltage engineering is critical to meeting Net Zero – a British transmission utility perspective

Dr. Cornel Brozio

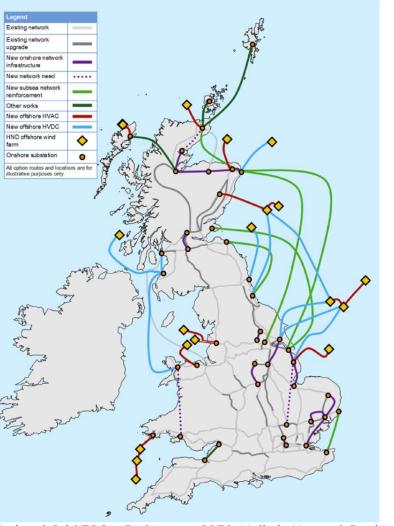

The Transmission Network and Net Zero

- Scotland plans to reach Net Zero by 2045 (UK target is 2050)
- ESO has zero carbon operation ambition by 2025
- Scottish wind generation
 - 11 GW already connected
 - More than 60 GW by 2040
- Scotland England network capacity
 - Presently 6.6 GW
 - 40 GW required by 2040

SP Energy Networks committed to

- Delivering a sustainable network
- Reducing SF₆ where possible

High voltage technology and engineering is vital for success



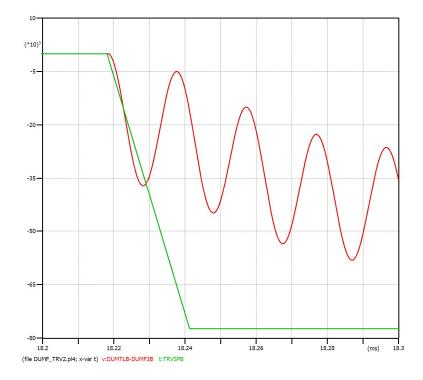
How is the Transmission Network Changing?

- Significant expansion in the next decade
- Network characteristics are evolving
 - More shunt and series reactors
 - Longer cables
 - Shunt capacitors (MSCDN) and harmonic filters
 - Lower losses, reduced damping
- HVDC, including multi-terminal systems
- More use of GIS
 - Smaller footprint
 - Allows off-line reconstruction of existing substations
- What are the high voltage issues?

National Grid ESO – Pathway to 2030, Holistic Network Design

Circuit Breakers

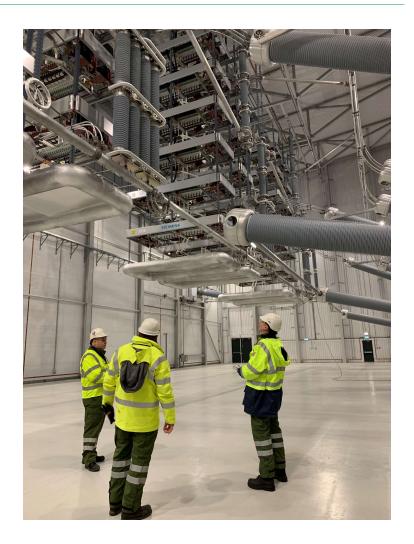
- Standard ratings are insufficient in an increasing number of cases
- DC time constant
 - High X/R ratios
 - IEC62271-100 standard DC time constant is 45 ms
 - SPEN specification is at least 60 ms
 - Transformer-fed faults are a particular problem
 - 90 ms for 132 kV
 - 135 ms for 33 kV
- Increased circuit breaker operations
 - Shunt reactors
- More application of point on wave switching



Circuit Breakers

• Standard ratings are insufficient in an increasing number of cases

- Transient recovery voltage
 - High prospective RRRV and peak TRV
 - Transformer-fed faults are a particular problem
 - Increased T30 requirement for 145 kV and 300 kV breakers
 - More discussions with manufacturers
 - Grading capacitors with multiple interrupters
- Very challenging requirements:
 - Increased DC time constant and TRV capability
 - Cost effective
 - Reliable
 - SF_6 free
 - DC circuit breakers?

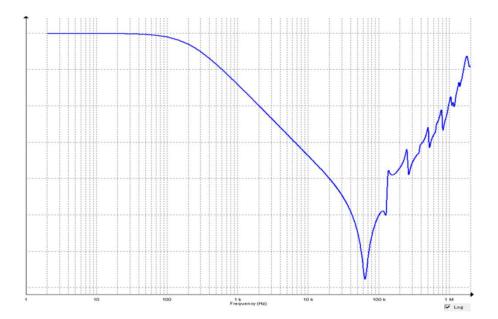


High Voltage Cables

New overhead lines problematic in the UK

- Visual impact and planning permission
- Public concerns about noise and electromagnetic fields
- Increased use of cables
- HVDC links
 - Offshore cable routes
 - Western Link (LCC, DC polarity reverses)
 - 2250 MW
 - ±600 kV DC, paper polypropylene laminate cable
 - Eastern Green Link EGL1 (VSC)
 - 2000 MW
 - ±525 kV DC, XLPE
- Higher voltage cables?
 - Cables are often a limiting component

High Voltage Measurements and Testing



Instrument transformers

- Harmonics up to at least 100 (5 kHz)
- Transient events and resonant conditions
- More phasor measurement units (PMU)
- SPEN slow to embrace new developments

• Use of frequency response analysis (FRA) measurements

- Very useful for estimating model parameters
- Available very late
- More design studies now required for TRV and insulation coordination
- Better models from manufacturers?

High Voltage Technology and Engineering

- Net Zero is not possible without high voltage engineering
- Manufacturers
 - Continue to enhance equipment ratings
 - New developments

Network Designers

- Need to be aware of issues
- Often better to design in mitigation (e.g. capacitance to manage TRV)
- Education and development of skills
- Should utilities be less risk averse?
- Close cooperation
 - Network companies
 - Manufacturers
 - Researchers and universities

